MathDB
Problems
Contests
International Contests
APMO
2004 APMO
4
4
Part of
2004 APMO
Problems
(1)
Floor function
Source: APMO 2004
4/8/2006
For a real number
x
x
x
, let
⌊
x
⌋
\lfloor x\rfloor
⌊
x
⌋
stand for the largest integer that is less than or equal to
x
x
x
. Prove that
⌊
(
n
−
1
)
!
n
(
n
+
1
)
⌋
\left\lfloor{(n-1)!\over n(n+1)}\right\rfloor
⌊
n
(
n
+
1
)
(
n
−
1
)!
⌋
is even for every positive integer
n
n
n
.
function
floor function
modular arithmetic
number theory
relatively prime
number theory unsolved