MathDB
Problems
Contests
International Contests
Austrian-Polish
1979 Austrian-Polish Competition
2
2
Part of
1979 Austrian-Polish Competition
Problems
(1)
Polynomials of the form P_n(x)=n!x^n+a_{n-1}x^{n-1}+...+a_1x+(-1)^n(n+1)
Source: 1979 Austrian-Polish Mathematical Competition p2
2/15/2020
Find all polynomials of the form
P
n
(
x
)
=
n
!
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
1
x
+
(
−
1
)
n
(
n
+
1
)
P_n(x)=n!x^n+a_{n-1}x^{n-1}+\dots+a_1x+(-1)^n(n+1)
P
n
(
x
)
=
n
!
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
1
x
+
(
−
1
)
n
(
n
+
1
)
with integer coefficients, having
n
n
n
real roots
x
1
,
…
,
x
n
x_1,\dots,x_n
x
1
,
…
,
x
n
satisfying
k
≤
x
k
≤
k
+
1
k \leq x_k \leq k+1
k
≤
x
k
≤
k
+
1
for
k
=
1
,
…
,
n
k=1, \dots,n
k
=
1
,
…
,
n
.
algebra
polynomial