For any natural number n=ak...a1a0 (ak=0) in decimal system write p(n)=a0⋅a1⋅...⋅ak, s(n)=a0+a1+...+ak, n∗=a0a1...ak. Consider P={n∣n=n∗,31p(n)=s(n)−1} and let Q be the set of numbers in P with all digits greater than 1.
(a) Show that P is infinite.
(b) Show that Q is finite.
(c) Write down all the elements of Q. sum of digitsproduct of digitsDigitsnumber theory