MathDB
Problems
Contests
International Contests
Austrian-Polish
1992 Austrian-Polish Competition
8
8
Part of
1992 Austrian-Polish Competition
Problems
(1)
(a_2+a_3+...a_n)/a_1 x a_1+a_3+a_4+...a_n)/a_2...
Source: Austrian - Polish 1992 APMC
5/7/2020
Let
n
≥
3
n\ge 3
n
≥
3
be a given integer. Nonzero real numbers
a
1
,
.
.
.
,
a
n
a_1,..., a_n
a
1
,
...
,
a
n
satisfy:
−
a
1
−
a
2
+
a
3
+
.
.
.
a
n
a
1
=
a
1
−
a
2
−
a
3
+
a
4
+
.
.
.
a
n
a
2
=
.
.
.
=
a
1
+
.
.
.
+
a
n
−
2
−
a
n
−
1
−
a
n
a
n
−
1
=
−
a
1
+
a
2
+
.
.
.
+
a
n
−
1
−
a
n
a
n
\frac{-a_1-a_2+a_3+...a_n}{a_1}=\frac{a_1-a_2-a_3+a_4+...a_n}{a_2}=...=\frac{a_1+...+a_{n-2}-a_{n-1}-a_n}{a_{n-1}}=\frac{-a_1+a_2+...+a_{n-1}-a_n}{a_{n}}
a
1
−
a
1
−
a
2
+
a
3
+
...
a
n
=
a
2
a
1
−
a
2
−
a
3
+
a
4
+
...
a
n
=
...
=
a
n
−
1
a
1
+
...
+
a
n
−
2
−
a
n
−
1
−
a
n
=
a
n
−
a
1
+
a
2
+
...
+
a
n
−
1
−
a
n
What values can be taken by the product
a
2
+
a
3
+
.
.
.
a
n
a
1
⋅
a
1
+
a
3
+
a
4
+
.
.
.
a
n
a
2
⋅
.
.
.
⋅
+
a
1
+
a
2
+
.
.
.
+
a
n
−
1
a
n
\frac{a_2+a_3+...a_n}{a_1}\cdot \frac{a_1+a_3+a_4+...a_n}{a_2}\cdot ...\cdot \frac{+a_1+a_2+...+a_{n-1}}{a_{n}}
a
1
a
2
+
a
3
+
...
a
n
⋅
a
2
a
1
+
a
3
+
a
4
+
...
a
n
⋅
...
⋅
a
n
+
a
1
+
a
2
+
...
+
a
n
−
1
?
Product
Sum
algebra