Let n>1 be an odd positive integer. Assume that positive integers x1,x2,...,xn≥0 satisfy:
⎩⎨⎧(x2−x1)2+2(x2+x1)+1=n2(x3−x2)2+2(x3+x2)+1=n2...(x1−xn)2+2(x1+xn)+1=n2
Show that there exists j,1≤j≤n, such that xj=xj+1. Here xn+1=x1. system of equationsalgebra