MathDB
Problems
Contests
International Contests
Austrian-Polish
2004 Austrian-Polish Competition
3
3
Part of
2004 Austrian-Polish Competition
Problems
(1)
Austria-Poland 2004 system of equations
Source: Austria-Poland 2004, single competition, problem 3
2/15/2005
Solve the following system of equations in
R
\mathbb{R}
R
where all square roots are non-negative:
a
−
1
−
b
2
+
1
−
c
2
=
d
b
−
1
−
c
2
+
1
−
d
2
=
a
c
−
1
−
d
2
+
1
−
a
2
=
b
d
−
1
−
a
2
+
1
−
b
2
=
c
\begin{matrix} a - \sqrt{1-b^2} + \sqrt{1-c^2} = d \\ b - \sqrt{1-c^2} + \sqrt{1-d^2} = a \\ c - \sqrt{1-d^2} + \sqrt{1-a^2} = b \\ d - \sqrt{1-a^2} + \sqrt{1-b^2} = c \\ \end{matrix}
a
−
1
−
b
2
+
1
−
c
2
=
d
b
−
1
−
c
2
+
1
−
d
2
=
a
c
−
1
−
d
2
+
1
−
a
2
=
b
d
−
1
−
a
2
+
1
−
b
2
=
c
linear algebra
matrix
trigonometry
algebra
system of equations
algebra unsolved