MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
A1
A1
Part of
2008 Balkan MO Shortlist
Problems
(1)
Inequality for all positive reals
Source: Balkan MO ShortList 2008 A1
4/5/2020
For all
α
1
,
α
2
,
α
3
∈
R
+
\alpha_1, \alpha_2,\alpha_3 \in \mathbb{R}^+
α
1
,
α
2
,
α
3
∈
R
+
, Prove \begin{align*} \sum \frac{1}{2\nu \alpha_1 +\alpha_2+\alpha_3} > \frac{2\nu}{2\nu +1} \left( \sum \frac{1}{\nu \alpha_1 + \nu \alpha_2 + \alpha_3} \right) \end{align*} for every positive real number
ν
\nu
ν
Inequality
inequalities