MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
G8
G8
Part of
2008 Balkan MO Shortlist
Problems
(1)
max (AP, BP, CP)>=\sqrt{d_a^2+d_b^2+d_c^2} where d_i distances of interior P
Source: Balkan MO Shortlist 2008 G8
4/6/2020
Let
P
P
P
be a point in the interior of a triangle
A
B
C
ABC
A
BC
and let
d
a
,
d
b
,
d
c
d_a,d_b,d_c
d
a
,
d
b
,
d
c
be its distances to
B
C
,
C
A
,
A
B
BC,CA,AB
BC
,
C
A
,
A
B
respectively. Prove that max
(
A
P
,
B
P
,
C
P
)
≥
d
a
2
+
d
b
2
+
d
c
2
(AP, BP, CP) \ge \sqrt{d_a^2+d_b^2+d_c^2}
(
A
P
,
BP
,
CP
)
≥
d
a
2
+
d
b
2
+
d
c
2
geometric inequality
geometry
max
distance