MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2009 Balkan MO Shortlist
A8
A8
Part of
2009 Balkan MO Shortlist
Problems
(1)
Prove the given inequality and how that K is non-negative
Source: Balkan MO ShortList 2009 A8
4/6/2020
For every positive integer
m
m
m
and for all non-negative real numbers
x
,
y
,
z
x,y,z
x
,
y
,
z
denote \begin{align*} K_m =x(x-y)^m (x-z)^m + y (y-x)^m (y-z)^m + z(z-x)^m (z-y)^m \end{align*}[*] Prove that
K
m
≥
0
K_m \geq 0
K
m
≥
0
for every odd positive integer
m
m
m
[*] Let
M
M
M
=
∏
c
y
c
(
x
−
y
)
2
= \prod_{cyc} (x-y)^2
=
∏
cyc
(
x
−
y
)
2
. Prove,
K
7
+
M
2
K
1
≥
M
K
4
K_7+M^2 K_1 \geq M K_4
K
7
+
M
2
K
1
≥
M
K
4