MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2015 Balkan MO Shortlist
A5
A5
Part of
2015 Balkan MO Shortlist
Problems
(1)
if (a^{m+1}-1)/(a^m-1)=(b^{n+1}-1)/(b^n-1)=c then a^m c^n > b^n c^{m}
Source: Balkan BMO Shortlist 2015 A5
8/5/2019
Let
m
,
n
m, n
m
,
n
be positive integers and
a
,
b
a, b
a
,
b
positive real numbers different from
1
1
1
such thath
m
>
n
m > n
m
>
n
and
a
m
+
1
−
1
a
m
−
1
=
b
n
+
1
−
1
b
n
−
1
=
c
\frac{a^{m+1}-1}{a^m-1} = \frac{b^{n+1}-1}{b^n-1} = c
a
m
−
1
a
m
+
1
−
1
=
b
n
−
1
b
n
+
1
−
1
=
c
. Prove that
a
m
c
n
>
b
n
c
m
a^m c^n > b^n c^{m}
a
m
c
n
>
b
n
c
m
(Turkey)
inequalities
algebra
Exponential inequality
exponential
Exponential equation