MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2015 Balkan MO Shortlist
A6
A6
Part of
2015 Balkan MO Shortlist
Problems
(1)
exists P\in R[x]$ of degree 2014^{2015} such that f(P)=2015 ?
Source: Balkan BMO Shortlist 2015 A6
8/5/2019
For a polynomials
P
∈
R
[
x
]
P\in \mathbb{R}[x]
P
∈
R
[
x
]
, denote
f
(
P
)
=
n
f(P)=n
f
(
P
)
=
n
if
n
n
n
is the smallest positive integer for which is valid
(
∀
x
∈
R
)
(
P
(
P
(
…
P
⏟
n
(
x
)
)
…
)
>
0
)
,
(\forall x\in \mathbb{R})(\underbrace{P(P(\ldots P}_{n}(x))\ldots )>0),
(
∀
x
∈
R
)
(
n
P
(
P
(
…
P
(
x
))
…
)
>
0
)
,
and
f
(
P
)
=
0
f(P)=0
f
(
P
)
=
0
if such n doeas not exist. Exists polyomial
P
∈
R
[
x
]
P\in \mathbb{R}[x]
P
∈
R
[
x
]
of degree
201
4
2015
2014^{2015}
201
4
2015
such that
f
(
P
)
=
2015
f(P)=2015
f
(
P
)
=
2015
?(Serbia)
algebra
polynomial