MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2018 Balkan MO Shortlist
A5
A5
Part of
2018 Balkan MO Shortlist
Problems
(1)
prove that f is a second degree polynomial.
Source: Shortlist BMO 2018, A5
5/3/2019
Let
f
:
R
→
R
f: \mathbb {R} \to \mathbb {R}
f
:
R
→
R
be a concave function and
g
:
R
→
R
g: \mathbb {R} \to \mathbb {R}
g
:
R
→
R
be a continuous function . If
f
(
x
+
y
)
+
f
(
x
−
y
)
−
2
f
(
x
)
=
g
(
x
)
y
2
f (x + y) + f (x-y) -2f (x) = g (x) y^2
f
(
x
+
y
)
+
f
(
x
−
y
)
−
2
f
(
x
)
=
g
(
x
)
y
2
for all
x
,
y
∈
R
,
x, y \in \mathbb {R},
x
,
y
∈
R
,
prove that
f
f
f
is a second degree polynomial.
functional equation
algebra
polynomial