MathDB
Problems
Contests
International Contests
Balkan MO
1987 Balkan MO
1
1
Part of
1987 Balkan MO
Problems
(1)
functional equation f(x+y)=f(x)f(a-y)+f(y)f(a-x) - show f is constant
Source: bmo 1987
4/23/2007
Let
a
a
a
be a real number and let
f
:
R
→
R
f : \mathbb{R}\rightarrow \mathbb{R}
f
:
R
→
R
be a function satisfying
f
(
0
)
=
1
2
f(0)=\frac{1}{2}
f
(
0
)
=
2
1
and f(x+y)=f(x)f(a-y)+f(y)f(a-x), \forall x,y \in \mathbb{R}. Prove that
f
f
f
is constant.
function