Let ABCDEF be a convex hexagon of area 1, whose opposite sides are parallel. The lines AB, CD and EF meet in pairs to determine the vertices of a triangle. Similarly, the lines BC, DE and FA meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least 3/2. inequalitiesgeometryLaTeXratiotrigonometrygeometry proposed