MathDB
Problems
Contests
International Contests
Baltic Way
1992 Baltic Way
13
13
Part of
1992 Baltic Way
Problems
(1)
Inequality with 2n variables
Source: Baltic Way 1992 #13
2/18/2009
Prove that for any positive
x
1
,
x
2
,
…
,
x
n
,
y
1
,
y
2
,
…
,
y
n
x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n
x
1
,
x
2
,
…
,
x
n
,
y
1
,
y
2
,
…
,
y
n
the inequality \sum_{i\equal{}1}^n\frac1{x_iy_i}\ge\frac{4n^2}{\sum_{i\equal{}1}^n(x_i\plus{}y_i)^2} holds.
inequalities
inequalities proposed