MathDB
Problems
Contests
International Contests
Baltic Way
2002 Baltic Way
4
4
Part of
2002 Baltic Way
Problems
(1)
Sum of x_1=1 inequality
Source: Baltic Way 2002
11/13/2010
Let
n
n
n
be a positive integer. Prove that
∑
i
=
1
n
x
i
(
1
−
x
i
)
2
≤
(
1
−
1
n
)
2
\sum_{i=1}^nx_i(1-x_i)^2\le\left(1-\frac{1}{n}\right)^2
i
=
1
∑
n
x
i
(
1
−
x
i
)
2
≤
(
1
−
n
1
)
2
for all nonnegative real numbers
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\ldots ,x_n
x
1
,
x
2
,
…
,
x
n
such that
x
1
+
x
2
+
…
x
n
=
1
x_1+x_2+\ldots x_n=1
x
1
+
x
2
+
…
x
n
=
1
.
inequalities
inequalities proposed