MathDB
Problems
Contests
International Contests
Baltic Way
2007 Baltic Way
13
13
Part of
2007 Baltic Way
Problems
(1)
Projections of points and lines
Source: Baltic Way 2007
11/30/2010
Let
t
1
,
t
2
,
…
,
t
k
t_1,t_2,\ldots,t_k
t
1
,
t
2
,
…
,
t
k
be different straight lines in space, where
k
>
1
k>1
k
>
1
. Prove that points
P
i
P_i
P
i
on
t
i
t_i
t
i
,
i
=
1
,
…
,
k
i=1,\ldots,k
i
=
1
,
…
,
k
, exist such that
P
i
+
1
P_{i+1}
P
i
+
1
is the projection of
P
i
P_i
P
i
on
t
i
+
1
t_{i+1}
t
i
+
1
for
i
=
1
,
…
,
k
−
1
i=1,\ldots,k-1
i
=
1
,
…
,
k
−
1
, and
P
1
P_1
P
1
is the projection of
P
k
P_k
P
k
on
t
1
t_1
t
1
.
geometry proposed
geometry