MathDB
Problems
Contests
International Contests
Baltic Way
2011 Baltic Way
1
1
Part of
2011 Baltic Way
Problems
(1)
Prove that all x_i are equal
Source: Baltic Way 2011
11/6/2011
The real numbers
x
1
,
…
,
x
2011
x_1,\ldots ,x_{2011}
x
1
,
…
,
x
2011
satisfy
x
1
+
x
2
=
2
x
1
′
,
x
2
+
x
3
=
2
x
2
′
,
…
,
x
2011
+
x
1
=
2
x
2011
′
x_1+x_2=2x_1',\ x_2+x_3=2x_2', \ \ldots, \ x_{2011}+x_1=2x_{2011}'
x
1
+
x
2
=
2
x
1
′
,
x
2
+
x
3
=
2
x
2
′
,
…
,
x
2011
+
x
1
=
2
x
2011
′
where
x
1
′
,
x
2
′
,
…
,
x
2011
′
x_1',x_2',\ldots,x_{2011}'
x
1
′
,
x
2
′
,
…
,
x
2011
′
is a permutation of
x
1
,
x
2
,
…
,
x
2011
x_1,x_2,\ldots,x_{2011}
x
1
,
x
2
,
…
,
x
2011
. Prove that
x
1
=
x
2
=
…
=
x
2011
x_1=x_2=\ldots =x_{2011}
x
1
=
x
2
=
…
=
x
2011
.
algebra proposed
algebra