MathDB
Problems
Contests
International Contests
Baltic Way
2013 Baltic Way
1
1
Part of
2013 Baltic Way
Problems
(1)
Maximal Value of Product
Source: 2013 Baltic Way, Problem 1
12/30/2013
Let
n
n
n
be a positive integer. Assume that
n
n
n
numbers are to be chosen from the table\begin{array}{cccc}0 & 1 & \cdots & n-1\\ n & n+1 & \cdots & 2n-1\\ \vdots & \vdots & \ddots & \vdots\$n-1)n & (n-1)n+1 & \cdots & n^2-1\end{array}
<
/
b
r
>
w
i
t
h
n
o
t
w
o
o
f
t
h
e
m
f
r
o
m
t
h
e
s
a
m
e
r
o
w
o
r
t
h
e
s
a
m
e
c
o
l
u
m
n
.
F
i
n
d
t
h
e
m
a
x
i
m
a
l
v
a
l
u
e
o
f
t
h
e
p
r
o
d
u
c
t
o
f
t
h
e
s
e
</br>with no two of them from the same row or the same column. Find the maximal value of the product of these
<
/
b
r
>
w
i
t
hn
o
tw
oo
f
t
h
e
m
f
ro
m
t
h
es
am
ero
w
or
t
h
es
am
eco
l
u
mn
.
F
in
d
t
h
e
ma
x
ima
l
v
a
l
u
eo
f
t
h
e
p
ro
d
u
c
t
o
f
t
h
ese
n$ numbers.
algebra unsolved
algebra