Let Γ be the circumcircle of an acute triangle ABC. The perpendicular to AB from C meets AB at D and Γ again at E. The bisector of angle C meets AB at F and Γ again at G. The line GD meets Γ again at H and the line HF meets Γ again at I. Prove that AI=EB. geometrycircumcirclegeometric transformationreflectiongeometry proposed