4
Problems(2)
Another problem on a square grid
Source: VI Caucasus Mathematical Olympiad
3/14/2021
A square grid is constructed of matches (each match is a segment of length 1). By one move Peter can choose a vertex which (at this moment) is the endpoint of 3 or 4 matches and delete two matches whose union is a segment of length 2. Find the least possible number of matches that could remain after a number of Peter's moves.
combinatorics
The reflections of the vertices and the intersections of circumcircle with HaHb
Source: VI Caucasus Mathematical Olympiad
3/14/2021
In an acute triangle let and be altitudes. Let intersect the circumcircle of at and . Let be the reflection of in , and let be the reflection of in . Prove that , , are concyclic.
geometrygeometric transformationreflectioncircumcircle