MathDB
Problems
Contests
International Contests
CentroAmerican
2010 CentroAmerican
5
5
Part of
2010 CentroAmerican
Problems
(1)
Centroamerican Olympiad 2010, problem 5
Source:
5/30/2010
If
p
p
p
,
q
q
q
and
r
r
r
are nonzero rational numbers such that
p
q
2
3
+
q
r
2
3
+
r
p
2
3
\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}
3
p
q
2
+
3
q
r
2
+
3
r
p
2
is a nonzero rational number, prove that
1
p
q
2
3
+
1
q
r
2
3
+
1
r
p
2
3
\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}
3
p
q
2
1
+
3
q
r
2
1
+
3
r
p
2
1
is also a rational number.
algebra
polynomial
inequalities
triangle inequality
algebra proposed