MathDB
Problems
Contests
International Contests
Cono Sur Olympiad
2008 Cono Sur Olympiad
1
1
Part of
2008 Cono Sur Olympiad
Problems
(1)
Reversing the digits
Source: Cono Sur 2008 #1
11/17/2015
We define
I
(
n
)
I(n)
I
(
n
)
as the result when the digits of
n
n
n
are reversed. For example,
I
(
123
)
=
321
I(123)=321
I
(
123
)
=
321
,
I
(
2008
)
=
8002
I(2008)=8002
I
(
2008
)
=
8002
. Find all integers
n
n
n
,
1
≤
n
≤
10000
1\leq{n}\leq10000
1
≤
n
≤
10000
for which
I
(
n
)
=
⌈
n
2
⌉
I(n)=\lceil{\frac{n}{2}}\rceil
I
(
n
)
=
⌈
2
n
⌉
. Note:
⌈
x
⌉
\lceil{x}\rceil
⌈
x
⌉
denotes the smallest integer greater than or equal to
x
x
x
. For example,
⌈
2.1
⌉
=
3
\lceil{2.1}\rceil=3
⌈
2.1
⌉
=
3
,
⌈
3.9
⌉
=
4
\lceil{3.9}\rceil=4
⌈
3.9
⌉
=
4
,
⌈
7
⌉
=
7
\lceil{7}\rceil=7
⌈
7
⌉
=
7
.
number theory
cono sur