MathDB
Problems
Contests
International Contests
Czech-Polish-Slovak Match
1998 Czech and Slovak Match
6
6
Part of
1998 Czech and Slovak Match
Problems
(1)
n girls, 2n-1 boys, dances with unknown, different ways
Source: Czech and Slovak Match 1998 P6
10/1/2017
In a summer camp there are
n
n
n
girls
D
1
,
D
2
,
.
.
.
,
D
n
D_1,D_2, ... ,D_n
D
1
,
D
2
,
...
,
D
n
and
2
n
−
1
2n-1
2
n
−
1
boys
C
1
,
C
2
,
.
.
.
,
C
2
n
−
1
C_1,C_2, ...,C_{2n-1}
C
1
,
C
2
,
...
,
C
2
n
−
1
. The girl
D
i
,
i
=
1
,
2
,
.
.
.
,
n
,
D_i, i = 1,2,... ,n,
D
i
,
i
=
1
,
2
,
...
,
n
,
knows only the boys
C
1
,
C
2
,
.
.
.
,
C
2
i
−
1
C_1,C_2, ... ,C_{2i-1}
C
1
,
C
2
,
...
,
C
2
i
−
1
. Let
A
(
n
,
r
)
A(n, r)
A
(
n
,
r
)
be the number of different ways in which
r
r
r
girls can dance with
r
r
r
boys forming
r
r
r
pairs, each girl with a boy she knows. Prove that
A
(
n
,
r
)
=
(
n
r
)
r
!
(
n
−
r
)
!
.
A(n, r) = \binom{n}{r} \frac{r!}{(n-r)!}.
A
(
n
,
r
)
=
(
r
n
)
(
n
−
r
)!
r
!
.
combinatorics