MathDB
Problems
Contests
International Contests
Czech-Polish-Slovak Match
2021 Czech-Austrian-Polish-Slovak Match
5
5
Part of
2021 Czech-Austrian-Polish-Slovak Match
Problems
(1)
Interesting sequence with \sqrt{2}
Source: 2021 Czech-Polish-Slovak Match, P5
8/3/2021
The sequence
a
1
,
a
2
,
a
3
,
…
a_1, a_2, a_3, \ldots
a
1
,
a
2
,
a
3
,
…
satisfies
a
1
=
1
a_1=1
a
1
=
1
, and for all
n
≥
2
n \ge 2
n
≥
2
, it holds that
a
n
=
{
a
n
−
1
+
3
if
n
−
1
∈
{
a
1
,
a
2
,
…
,
,
a
n
−
1
}
;
a
n
−
1
+
2
otherwise
.
a_n= \begin{cases} a_{n-1}+3 ~~ \text{if} ~ n-1 \in \{ a_1,a_2,\ldots,,a_{n-1} \} ; \\ a_{n-1}+2 ~~ \text{otherwise}. \end{cases}
a
n
=
{
a
n
−
1
+
3
if
n
−
1
∈
{
a
1
,
a
2
,
…
,,
a
n
−
1
}
;
a
n
−
1
+
2
otherwise
.
Prove that for all positive integers n, we have
a
n
<
n
⋅
(
1
+
2
)
.
a_n < n \cdot (1 + \sqrt{2}).
a
n
<
n
⋅
(
1
+
2
)
.
Dominik Burek (Poland) (also known as [url=https://artofproblemsolving.com/community/user/100466]Burii)