MathDB
Problems
Contests
International Contests
Danube Competition in Mathematics
2009 Danube Mathematical Competition
5
5
Part of
2009 Danube Mathematical Competition
Problems
(1)
sum_{k=i}^{j} f(\sigma (k)) <= 2, for permutations of {1,..,n}
Source: Danube 2009 p5
7/22/2019
Let
σ
,
τ
\sigma, \tau
σ
,
τ
be two permutations of the quantity
{
1
,
2
,
.
.
.
,
n
}
\{1, 2,. . . , n\}
{
1
,
2
,
...
,
n
}
. Prove that there is a function
f
:
{
1
,
2
,
.
.
.
,
n
}
→
{
−
1
,
1
}
f: \{1, 2,. . . , n\} \to \{-1, 1\}
f
:
{
1
,
2
,
...
,
n
}
→
{
−
1
,
1
}
such that for any
1
≤
i
≤
j
≤
n
1 \le i \le j \le n
1
≤
i
≤
j
≤
n
, we have
∣
∑
k
=
i
j
f
(
σ
(
k
)
)
∣
≤
2
\left|\sum_{k=i}^{j} f(\sigma (k)) \right| \le 2
∑
k
=
i
j
f
(
σ
(
k
))
≤
2
and
∣
∑
k
=
i
j
f
(
τ
(
k
)
)
∣
≤
2
\left|\sum_{k=i}^{j} f(\tau (k))\right| \le 2
∑
k
=
i
j
f
(
τ
(
k
))
≤
2
combinatorics
permutations
function
Sum
inequalities