MathDB
Problems
Contests
International Contests
EGMO
2020 EGMO
1
1
Part of
2020 EGMO
Problems
(1)
2020 EGMO P1: Linear recurrence is divisible by 2^2020
Source: 2020 EGMO P1
4/18/2020
The positive integers
a
0
,
a
1
,
a
2
,
…
,
a
3030
a_0, a_1, a_2, \ldots, a_{3030}
a
0
,
a
1
,
a
2
,
…
,
a
3030
satisfy
2
a
n
+
2
=
a
n
+
1
+
4
a
n
for
n
=
0
,
1
,
2
,
…
,
3028.
2a_{n + 2} = a_{n + 1} + 4a_n \text{ for } n = 0, 1, 2, \ldots, 3028.
2
a
n
+
2
=
a
n
+
1
+
4
a
n
for
n
=
0
,
1
,
2
,
…
,
3028.
Prove that at least one of the numbers
a
0
,
a
1
,
a
2
,
…
,
a
3030
a_0, a_1, a_2, \ldots, a_{3030}
a
0
,
a
1
,
a
2
,
…
,
a
3030
is divisible by
2
2020
2^{2020}
2
2020
.
number theory
Sequence
EGMO