MathDB
Problems
Contests
International Contests
Gulf Math Olympiad
2016 Gulf Math Olympiad
2
2
Part of
2016 Gulf Math Olympiad
Problems
(1)
another number theory problem
Source: GMO 2016
9/28/2017
Let
x
x
x
be a real number that satisfies
x
1
+
x
−
1
=
3
x^1 + x^{-1} = 3
x
1
+
x
−
1
=
3
Prove that
x
n
+
x
−
n
x^n + x^{-n}
x
n
+
x
−
n
is an positive integer , then prove that the positive integer
x
3
1437
+
x
3
−
1437
x^{3^{1437}}+x^{3^{-1437}}
x
3
1437
+
x
3
−
1437
is divisible by at least
1439
×
2
1437
1439 \times 2^{1437}
1439
×
2
1437
positive integers
GMO-Gulf Mathmatical Olympiad
number theory