Let Fn be the n− th Fibonacci number (where F1=F2=1). Consider the functions
fn(x)=∥...∥∣x∣−Fn∣−Fn−1∣−...−F2∣−F1∣,gn(x)=∣...∥x−1∣−1∣−...−1∣ (F1+...+Fn one’s).
Show that fn(x)=gn(x) for every real number x. functionalgebra unsolvedalgebra