MathDB
Problems
Contests
International Contests
IberoAmerican
1988 IberoAmerican
2
2
Part of
1988 IberoAmerican
Problems
(1)
The positive integers a,b,c,d,p,q
Source: IberoAmerican 1988 Q2
12/13/2010
Let
a
,
b
,
c
,
d
,
p
a,b,c,d,p
a
,
b
,
c
,
d
,
p
and
q
q
q
be positive integers satisfying
a
d
−
b
c
=
1
ad-bc=1
a
d
−
b
c
=
1
and
a
b
>
p
q
>
c
d
\frac{a}{b}>\frac{p}{q}>\frac{c}{d}
b
a
>
q
p
>
d
c
.Prove that:
(
a
)
(a)
(
a
)
q
≥
b
+
d
q\ge b+d
q
≥
b
+
d
(
b
)
(b)
(
b
)
If
q
=
b
+
d
q=b+d
q
=
b
+
d
, then
p
=
a
+
c
p=a+c
p
=
a
+
c
.
number theory proposed
number theory