MathDB
Problems
Contests
International Contests
IberoAmerican
1990 IberoAmerican
1
1
Part of
1990 IberoAmerican
Problems
(1)
Integer function and powers of two
Source: Iberoamerican Olympiad 1990, Problem 1
5/21/2007
Let
f
f
f
be a function defined for the non-negative integers, such that: a)
f
(
n
)
=
0
f(n)=0
f
(
n
)
=
0
if
n
=
2
j
−
1
n=2^{j}-1
n
=
2
j
−
1
for some
j
≥
0
j \geq 0
j
≥
0
. b)
f
(
n
+
1
)
=
f
(
n
)
−
1
f(n+1)=f(n)-1
f
(
n
+
1
)
=
f
(
n
)
−
1
otherwise. i) Show that for every
n
≥
0
n \geq 0
n
≥
0
there exists
k
≥
0
k \geq 0
k
≥
0
such that
f
(
n
)
+
n
=
2
k
−
1
f(n)+n=2^{k}-1
f
(
n
)
+
n
=
2
k
−
1
. ii) Find
f
(
2
1990
)
f(2^{1990})
f
(
2
1990
)
.
function
induction