MathDB
Problems
Contests
International Contests
IMO Longlists
1970 IMO Longlists
36
36
Part of
1970 IMO Longlists
Problems
(1)
The greatest value that x^2 -yz, y^2 - xz, z^2 - xy can have
Source: IMO LongList 1970 - P36
5/21/2011
Let
x
,
y
,
z
x, y, z
x
,
y
,
z
be non-negative real numbers satisfying x^2 + y^2 + z^2 = 5 \text{ and } yz + zx + xy = 2. Which values can the greatest of the numbers
x
2
−
y
z
,
y
2
−
x
z
x^2 -yz, y^2 - xz
x
2
−
yz
,
y
2
−
x
z
and
z
2
−
x
y
z^2 - xy
z
2
−
x
y
have?
inequalities proposed
inequalities