MathDB
Problems
Contests
International Contests
IMO Longlists
1970 IMO Longlists
43
43
Part of
1970 IMO Longlists
Problems
(1)
π/36 is a root of the equation - (Nice?)
Source: IMO LongList 1970 - P43
5/22/2011
Prove that the equation
x
3
−
3
tan
π
12
x
2
−
3
x
+
tan
π
12
=
0
x^3 - 3 \tan\frac{\pi}{12} x^2 - 3x + \tan\frac{\pi}{12}= 0
x
3
−
3
tan
12
π
x
2
−
3
x
+
tan
12
π
=
0
has one root
x
1
=
tan
π
36
x_1 = \tan \frac{\pi}{36}
x
1
=
tan
36
π
, and find the other roots.
trigonometry
algebra proposed
algebra