MathDB
Problems
Contests
International Contests
IMO Longlists
1970 IMO Longlists
6
6
Part of
1970 IMO Longlists
Problems
(1)
Existence of Roots in Certain Intervals
Source: ILL 1970 - Problem 6.
5/24/2011
There is an equation
∑
i
=
1
n
b
i
x
−
a
i
=
c
\sum_{i=1}^{n}{\frac{b_i}{x-a_i}}=c
∑
i
=
1
n
x
−
a
i
b
i
=
c
in
x
x
x
, where all
b
i
>
0
b_i >0
b
i
>
0
and
{
a
i
}
\{a_i\}
{
a
i
}
is a strictly increasing sequence. Prove that it has
n
−
1
n-1
n
−
1
roots such that
x
n
−
1
≤
a
n
x_{n-1}\le a_n
x
n
−
1
≤
a
n
, and
a
i
≤
x
i
a_i \le x_i
a
i
≤
x
i
for each
i
∈
N
,
1
≤
i
≤
n
−
1
i\in\mathbb{N}, 1\le i\le n-1
i
∈
N
,
1
≤
i
≤
n
−
1
.
function
algebra unsolved
algebra