MathDB
Problems
Contests
International Contests
IMO Longlists
1971 IMO Longlists
40
40
Part of
1971 IMO Longlists
Problems
(1)
The maximum of S for the subset σ [ILL 1971]
Source:
1/1/2011
Consider the set of grid points
(
m
,
n
)
(m,n)
(
m
,
n
)
in the plane,
m
,
n
m,n
m
,
n
integers. Let
σ
\sigma
σ
be a finite subset and define
S
(
σ
)
=
∑
(
m
,
n
)
∈
σ
(
100
−
∣
m
∣
−
∣
n
∣
)
S(\sigma)=\sum_{(m,n)\in\sigma}(100-|m|-|n|)
S
(
σ
)
=
(
m
,
n
)
∈
σ
∑
(
100
−
∣
m
∣
−
∣
n
∣
)
Find the maximum of
S
S
S
, taken over the set of all such subsets
σ
\sigma
σ
.
combinatorics proposed
combinatorics