MathDB
Problems
Contests
International Contests
IMO Longlists
1979 IMO Longlists
32
32
Part of
1979 IMO Longlists
Problems
(1)
Number of solutions for |x_1| + |x_2| +...+ |x_k| = n
Source: ILL 1979-32
6/2/2011
Let
n
,
k
≥
1
n, k \ge 1
n
,
k
≥
1
be natural numbers. Find the number
A
(
n
,
k
)
A(n, k)
A
(
n
,
k
)
of solutions in integers of the equation
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
k
∣
=
n
|x_1| + |x_2| +\cdots + |x_k| = n
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
k
∣
=
n
combinatorics unsolved
combinatorics