MathDB
Problems
Contests
International Contests
IMO Longlists
1979 IMO Longlists
40
40
Part of
1979 IMO Longlists
Problems
(1)
Inequality regarding a polynomial
Source: ILL 1979-40
6/2/2011
A polynomial
P
(
x
)
P(x)
P
(
x
)
has degree at most
2
k
2k
2
k
, where
k
=
0
,
1
,
2
,
⋯
k = 0, 1,2,\cdots
k
=
0
,
1
,
2
,
⋯
. Given that for an integer
i
i
i
, the inequality
−
k
≤
i
≤
k
-k \le i \le k
−
k
≤
i
≤
k
implies
∣
P
(
i
)
∣
≤
1
|P(i)| \le 1
∣
P
(
i
)
∣
≤
1
, prove that for all real numbers
x
x
x
, with
−
k
≤
x
≤
k
-k \le x \le k
−
k
≤
x
≤
k
, the following inequality holds:
∣
P
(
x
)
∣
<
(
2
k
+
1
)
(
2
k
k
)
|P(x)| < (2k + 1)\dbinom{2k}{k}
∣
P
(
x
)
∣
<
(
2
k
+
1
)
(
k
2
k
)
Zhan
QJYT
SBYT