MathDB
Problems
Contests
International Contests
IMO Longlists
1979 IMO Longlists
43
43
Part of
1979 IMO Longlists
Problems
(1)
$aPA^2+bPB^2+cPC^2$ is constant for P on incircle.
Source: ILL 1979-43
6/2/2011
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
denote the lengths of the sides
B
C
,
C
A
,
A
B
BC,CA,AB
BC
,
C
A
,
A
B
, respectively, of a triangle
A
B
C
ABC
A
BC
. If
P
P
P
is any point on the circumference of the circle inscribed in the triangle, show that
a
P
A
2
+
b
P
B
2
+
c
P
C
2
aPA^2+bPB^2+cPC^2
a
P
A
2
+
b
P
B
2
+
c
P
C
2
is constant.
geometry proposed
geometry