MathDB
Problems
Contests
International Contests
IMO Longlists
1979 IMO Longlists
56
56
Part of
1979 IMO Longlists
Problems
(1)
Existence of natural - involves floor function, sqrt{2}
Source: ILL 1979 - Problem 56.
6/5/2011
Show that for every
n
∈
N
n\in\mathbb{N}
n
∈
N
,
n
2
−
⌊
n
2
⌋
>
1
2
n
2
n\sqrt{2}-\lfloor n\sqrt{2}\rfloor>\frac{1}{2n \sqrt{2}}
n
2
−
⌊
n
2
⌋
>
2
n
2
1
and that for every
ϵ
>
0
\epsilon >0
ϵ
>
0
, there exists an
n
∈
N
n\in\mathbb{N}
n
∈
N
such that
n
2
−
⌊
n
2
⌋
<
1
2
n
2
+
ϵ
n\sqrt{2}-\lfloor n\sqrt{2}\rfloor < \frac{1}{2n \sqrt{2}}+\epsilon
n
2
−
⌊
n
2
⌋
<
2
n
2
1
+
ϵ
.
function
floor function
Diophantine equation
algebra unsolved
algebra