MathDB
Problems
Contests
International Contests
IMO Longlists
1983 IMO Longlists
49
49
Part of
1983 IMO Longlists
Problems
(1)
Inequality on k variables
Source:
10/7/2010
Given positive integers
k
,
m
,
n
k,m, n
k
,
m
,
n
with
k
m
≤
n
km \leq n
km
≤
n
and non-negative real numbers
x
1
,
…
,
x
k
x_1, \ldots , x_k
x
1
,
…
,
x
k
, prove that
n
(
∏
i
=
1
k
x
i
m
−
1
)
≤
m
∑
i
=
1
k
(
x
i
n
−
1
)
.
n \left( \prod_{i=1}^k x_i^m -1 \right) \leq m \sum_{i=1}^k (x_i^n-1).
n
(
i
=
1
∏
k
x
i
m
−
1
)
≤
m
i
=
1
∑
k
(
x
i
n
−
1
)
.
inequalities
inequalities proposed