MathDB
Problems
Contests
International Contests
IMO Longlists
1984 IMO Longlists
5
5
Part of
1984 IMO Longlists
Problems
(1)
Identity involving GIF
Source:
10/12/2010
For a real number
x
x
x
, let
[
x
]
[x]
[
x
]
denote the greatest integer not exceeding
x
x
x
. If
m
≥
3
m \ge 3
m
≥
3
, prove that
[
m
(
m
+
1
)
2
(
2
m
−
1
)
]
=
[
m
+
1
4
]
\left[\frac{m(m+1)}{2(2m-1)}\right]=\left[\frac{m+1}{4}\right]
[
2
(
2
m
−
1
)
m
(
m
+
1
)
]
=
[
4
m
+
1
]
inequalities unsolved
inequalities