MathDB
Problems
Contests
International Contests
IMO Longlists
1985 IMO Longlists
67
67
Part of
1985 IMO Longlists
Problems
(1)
Very nice number theory - Show that n_i=1
Source:
9/14/2010
Let
k
≥
2
k \geq 2
k
≥
2
and
n
1
,
n
2
,
.
.
.
,
n
k
≥
1
n_1, n_2, . . . , n_k \geq 1
n
1
,
n
2
,
...
,
n
k
≥
1
natural numbers having the property
n
2
∣
2
n
1
−
1
,
n
3
∣
2
n
2
−
1
,
⋯
,
n
k
∣
2
n
k
−
1
−
1
n_2 | 2^{n_1} - 1, n_3 | 2^{n_2} -1 , \cdots, n_k | 2^{n_k-1}-1
n
2
∣
2
n
1
−
1
,
n
3
∣
2
n
2
−
1
,
⋯
,
n
k
∣
2
n
k
−
1
−
1
, and
n
1
∣
2
n
k
−
1
n_1 | 2^{n_k} - 1
n
1
∣
2
n
k
−
1
. Show that
n
1
=
n
2
=
⋯
=
n
k
=
1.
n_1 = n_2 = \cdots = n_k = 1.
n
1
=
n
2
=
⋯
=
n
k
=
1.
number theory unsolved
number theory