Let S be a k-element set.(a) Find the number of mappings f:SāS such that
\text{(i) } f(x) \neq x \text{ for } x \in S, \text{(ii) } f(f(x)) = x \text{ for }x \in S.(b) The same with the condition (i) left out. floor functioncombinatorics unsolvedcombinatorics