MathDB
Problems
Contests
International Contests
IMO Longlists
1987 IMO Longlists
15
15
Part of
1987 IMO Longlists
Problems
(1)
Interesting problem from ILL 1987 FRA2
Source:
9/5/2010
Let
a
1
,
a
2
,
a
3
,
b
1
,
b
2
,
b
3
,
c
1
,
c
2
,
c
3
a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3
a
1
,
a
2
,
a
3
,
b
1
,
b
2
,
b
3
,
c
1
,
c
2
,
c
3
be nine strictly positive real numbers. We set S_1 = a_1b_2c_3, S_2 = a_2b_3c_1, S_3 = a_3b_1c_2;T_1 = a_1b_3c_2, T_2 = a_2b_1c_3, T_3 = a_3b_2c_1. Suppose that the set
{
S
1
,
S
2
,
S
3
,
T
1
,
T
2
,
T
3
}
\{S1, S2, S3, T1, T2, T3\}
{
S
1
,
S
2
,
S
3
,
T
1
,
T
2
,
T
3
}
has at most two elements.Prove that
S
1
+
S
2
+
S
3
=
T
1
+
T
2
+
T
3
.
S_1 + S_2 + S_3 = T_1 + T_2 + T_3.
S
1
+
S
2
+
S
3
=
T
1
+
T
2
+
T
3
.
algebra proposed
algebra