MathDB
Problems
Contests
International Contests
IMO Longlists
1988 IMO Longlists
35
35
Part of
1988 IMO Longlists
Problems
(1)
Sequence from Iceland
Source: IMO LongList 1988, Iceland 2, Problem 35 of ILL
10/22/2005
A sequence of numbers
a
n
,
n
=
1
,
2
,
…
,
a_n, n = 1,2, \ldots,
a
n
,
n
=
1
,
2
,
…
,
is defined as follows:
a
1
=
1
2
a_1 = \frac{1}{2}
a
1
=
2
1
and for each
n
≥
2
n \geq 2
n
≥
2
a
n
=
2
n
−
3
2
n
a
n
−
1
.
a_n = \frac{2 n - 3}{2 n} a_{n-1}.
a
n
=
2
n
2
n
−
3
a
n
−
1
.
Prove that
∑
k
=
1
n
a
k
<
1
\sum^n_{k=1} a_k < 1
∑
k
=
1
n
a
k
<
1
for all
n
≥
1.
n \geq 1.
n
≥
1.
induction
limit
algebra unsolved
algebra