MathDB
Problems
Contests
International Contests
IMO Longlists
1988 IMO Longlists
55
55
Part of
1988 IMO Longlists
Problems
(1)
IMO LongList 1988 Trignometric Inequality
Source: IMO LongList 1988, Mongolia 5, Problem 55 of ILL
11/3/2005
Suppose
α
i
>
0
,
β
i
>
0
\alpha_i > 0, \beta_i > 0
α
i
>
0
,
β
i
>
0
for
1
≤
i
≤
n
,
n
>
1
1 \leq i \leq n, n > 1
1
≤
i
≤
n
,
n
>
1
and that
∑
i
=
1
n
α
i
=
∑
i
=
1
n
β
i
=
π
.
\sum^n_{i=1} \alpha_i = \sum^n_{i=1} \beta_i = \pi.
i
=
1
∑
n
α
i
=
i
=
1
∑
n
β
i
=
π
.
Prove that
∑
i
=
1
n
cos
(
β
i
)
sin
(
α
i
)
≤
∑
i
=
1
n
cot
(
α
i
)
.
\sum^n_{i=1} \frac{\cos(\beta_i)}{\sin(\alpha_i)} \leq \sum^n_{i=1} \cot(\alpha_i).
i
=
1
∑
n
sin
(
α
i
)
cos
(
β
i
)
≤
i
=
1
∑
n
cot
(
α
i
)
.
inequalities
trigonometry
induction
rearrangement inequality
algebra unsolved
algebra