MathDB
Problems
Contests
International Contests
IMO Longlists
1990 IMO Longlists
72
72
Part of
1990 IMO Longlists
Problems
(1)
There exists a pair of indexes - ILL 1990 KOR1
Source:
9/18/2010
Let
n
≥
5
n \geq 5
n
≥
5
be a positive integer.
a
1
,
b
1
,
a
2
,
b
2
,
…
,
a
n
,
b
n
a_1, b_1, a_2, b_2, \ldots, a_n, b_n
a
1
,
b
1
,
a
2
,
b
2
,
…
,
a
n
,
b
n
are integers.
(
a
i
,
b
i
)
( a_i, b_i)
(
a
i
,
b
i
)
are pairwisely distinct for
i
=
1
,
2
,
…
,
n
i = 1, 2, \ldots, n
i
=
1
,
2
,
…
,
n
, and
∣
a
1
b
2
−
a
2
b
1
∣
=
∣
a
2
b
3
−
a
3
b
2
∣
=
⋯
=
∣
a
n
−
1
b
n
−
a
n
b
n
−
1
∣
=
1
|a_1b_2 - a_2b_1| = |a_2b_3 -a_3b_2| = \cdots = |a_{n-1}b_n -a_nb_{n-1}| = 1
∣
a
1
b
2
−
a
2
b
1
∣
=
∣
a
2
b
3
−
a
3
b
2
∣
=
⋯
=
∣
a
n
−
1
b
n
−
a
n
b
n
−
1
∣
=
1
. Prove that there exists a pair of indexes
i
,
j
i, j
i
,
j
satisfying
2
≤
∣
i
−
j
∣
≤
n
−
2
2 \leq |i - j| \leq n - 2
2
≤
∣
i
−
j
∣
≤
n
−
2
and
∣
a
i
b
j
−
a
j
b
i
∣
=
1.
|a_ib_j -a_jb_i| = 1.
∣
a
i
b
j
−
a
j
b
i
∣
=
1.
algebra proposed
algebra