MathDB
Problems
Contests
International Contests
IMO Longlists
1990 IMO Longlists
86
86
Part of
1990 IMO Longlists
Problems
(1)
Prove that there exists real number p - ILL 1990 SWE4
Source:
9/19/2010
Given function
f
(
x
)
=
sin
x
+
sin
π
x
f(x) = \sin x + \sin \pi x
f
(
x
)
=
sin
x
+
sin
π
x
and positive number
d
d
d
. Prove that there exists real number
p
p
p
such that
∣
f
(
x
+
p
)
−
f
(
x
)
∣
<
d
|f(x + p) - f(x)| < d
∣
f
(
x
+
p
)
−
f
(
x
)
∣
<
d
holds for all real numbers
x
x
x
, and the value of
p
p
p
can be arbitrarily large.
function
trigonometry
algebra unsolved
algebra