MathDB
Problems
Contests
International Contests
IMO Longlists
1992 IMO Longlists
4
4
Part of
1992 IMO Longlists
Problems
(1)
Geometric inequality with angles
Source:
9/1/2010
Let
p
,
q
p, q
p
,
q
, and
r
r
r
be the angles of a triangle, and let
a
=
sin
2
p
,
b
=
sin
2
q
a = \sin2p, b = \sin2q
a
=
sin
2
p
,
b
=
sin
2
q
, and
c
=
sin
2
r
c = \sin2r
c
=
sin
2
r
. If
s
=
(
a
+
b
+
c
)
2
s = \frac{(a + b + c)}2
s
=
2
(
a
+
b
+
c
)
, show that
s
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
≥
0.
s(s - a)(s - b)(s -c) \geq 0.
s
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
≥
0.
When does equality hold?
trigonometry
geometry
area of a triangle
geometric inequality
IMO Shortlist
IMO Longlist