MathDB
Problems
Contests
International Contests
IMO Shortlist
1969 IMO Shortlist
41
41
Part of
1969 IMO Shortlist
Problems
(1)
Expression for solution of equation.
Source:
10/4/2010
(
M
O
N
2
)
(MON 2)
(
MON
2
)
Given reals
x
0
,
x
1
,
α
,
β
x_0, x_1, \alpha, \beta
x
0
,
x
1
,
α
,
β
, find an expression for the solution of the system
x
n
+
2
−
α
x
n
+
1
−
β
x
n
=
0
,
n
=
0
,
1
,
2
,
…
x_{n+2} -\alpha x_{n+1} -\beta x_n = 0, \qquad n= 0, 1, 2, \ldots
x
n
+
2
−
α
x
n
+
1
−
β
x
n
=
0
,
n
=
0
,
1
,
2
,
…
algebra
recurrence relation
system of equations
Linear Recurrences
IMO Shortlist
IMO Longlist